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We augment Henderson et al. (2012)’s two-signal model of true GDP growth

with a third signal to overcome its underidentification problem. The addi-

tional moment conditions from the third signal help fully identify all model

parameters without ad-hoc calibrations of the GDP’s signal-to-noise ratio. We

characterize the necessary properties of the third signal. Using the model, we

recover the optimal weight of official GDP in the composite true GDP growth

estimates, which varies with the quality of the national statistics. The model

improves on existing methodologies that use signals to measure true income.
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1 Introduction

The seminal paper of Henderson et al. (2012) (HSW, henceforth) introduced a sta-

tistical framework to use nightlights growth to proxy for economic activity. HSW

use this framework to obtain two main results. First, they show that nightlights

can be used to directly predict GDP growth. This is useful, for instance, at sub- or

supra-national level when official GDP measures are not available. A large body

of literature has exploited this result for a variety of empirical applications.1

Second, they propose a model that combines official GDP — intended as

a noisy signal of true economic growth — with nightlights as a second signal to

improve estimates of unobservable true GDP growth. This is useful when official

GDP measures exist, but there are reasons to believe they are unreliable (see e.g.

Morris and Zhang, 2019). Their two-signal model of true GDP growth, however,

has an important shortcoming: it needs to identify four structural parameters with

only three sample moments from observed data. HSW solve this by assuming a

value for the signal-to-noise ratio of the GDP signal.

The need for underlying conventional GDP data and the lack of a straight-

forward identification strategy have restricted the empirical applications of this

model. Nevertheless, estimating true economic activity is, in principle, more rele-

vant than just having an estimate of official GDP, and a fully identified model can

constitute a useful benchmark for other approaches that aim to measure economic

activity. This paper proposes a novel solution that overcomes the underidentifica-

tion problem of the HSW framework by augmenting it with a third signal.

We first theoretically demonstrate that a three-signal version of the HSW

model is fully identified. The third signal increases the number of parameters to

be estimated; however, it also provides three additional moment conditions: its

variance and covariances with the two original signals (official GDP and night-

1See, among the others, Storeygard (2016); Michalopoulos and Papaioannou (2013a,b); Alesina
et al. (2016); Dreher and Lohmann (2015); Civelli et al. (2018); Hodler and Raschky (2014).
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lights). The six moment conditions fully identify the six model parameters. We

also characterize the necessary properties of this third signal.

Then, we illustrate its applications using urban land cover data as an exam-

ple of a viable third signal. Globally, urban land cover data have become increas-

ingly available for extended periods and at different frequencies. They have been

shown to provide meaningful information about economic growth beyond night-

lights, especially in more agriculture-intensive regions and at the subnational level

(see, for instance, Goldblatt et al., 2019; Keola et al., 2015; Wu et al., 2013). Hence,

it constitutes a convenient (albeit, not the sole) candidate for a third signal.

We show that urban land cover is a good candidate for a third signal in

two samples of national economies: all and African countries. We first show that

changes in urban land cover have a significant predictive power of official GDP

growth. Then, we apply the urban land cover change to the augmented model

and proceed to fully identify the model for the estimation of true GDP growth. We

verify that it empirically satisfies the necessary properties to be a valid auxiliary

signal.

We find that the relative weight of the official GDP data in the true GDP

composite (λ∗, following the HSW notation) is 0.56 for the full set of countries.

λ∗ drops to 0.20 for the sub-group of countries with low-quality official GDP data

and increases to 0.82 for countries with high-quality ones. For African countries,

we find a λ∗ = 0.38. Overall, they suggest that this method assigns an official GDP

weight that is inversely related to the quality of the official data, as hypothesized

by HSW.

Our approach is useful for empirical researchers in four ways.

First, as we show below, when feasible, this model is superior to simply us-

ing the additional signal as a covariate to improve predicted GDP growth (as in e.g.,

Baragwanath et al., 2021; Engstrom et al., 2021; Goldblatt et al., 2019; Lehnert et al.,

2020). We find that the true GDP growth estimates from an identified two- or three-
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signal model do not significantly differ. Similarly, once the key model parameter

λ∗ is recovered from a fully identified model, the true GDP growth estimates are

invariant to using two or three signals in the GDP prediction stage.

Second, the fully identified model introduces new ways to improve true

GDP estimates. The identified primitives for a set of regions where an appropriate

third signal is available can be used to estimate true income growth in similar

regions where such a signal is unavailable.2

Third, our approach can be used to validate the use of nightlights or other

types of signals to predict economic activities, by providing a useful tool to assess

the magnitude and direction of potential measurement errors. We find that these

errors can be quite large, especially at the extremes of the income distribution and

when true GDP growth is negative.

Finally, it provides a criterion to choose between alternative third signals,

based on the minimization of the variance of true GDP growth forecast errors.

This is empirically useful given the increasing availability of geospatial and other

data that can serve as a potential signal. We illustrate its use by benchmarking

urban land cover against nitrogen dioxide (NO2) emission, another good predictor

of true GDP growth (Morris and Zhang, 2019).

We contribute to the literature on methodological improvements to HSW’s

use of signals to measure true GDP growth. A strand of this literature highlights

the non-linear aspects of the relation between nightlights and underlying economic

activity (Bickenbach et al., 2016; Bluhm and McCord, 2022; Chen and Nordhaus,

2011; Goldblatt et al., 2019; Keola et al., 2015; Maldonado, 2022; Wu et al., 2013).

Another focuses on the utility of different sources of nightlights and other satellite

data – especially in conjunction with machine learning methodologies – to improve

growth measurements (Baragwanath et al., 2021; Beyer et al., 2018; Dai et al., 2017;

2This result requires an assumption (used by HSW, in their calibration exercise, see p. 1009,
1018) that these two region groupings only differ from one other in their signal-to-noise ratio of the
official GDP data.
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Engstrom et al., 2021; Gibson and Boe-Gibson, 2021; Goldblatt et al., 2019; Lehnert

et al., 2020; Wang et al., 2019; Zhang and Gibson, 2022).

Our work is closer in spirit to Morris and Zhang (2019) and Ezran et al.

(2023) who rely on multi-signal settings to overcome the identification problem.

Their models are based on econometric settings where the additional signals are

used as instrumental variables, with significant deviations from HSW. We take

a novel approach that introduces a simple theoretical refinement to significantly

improve the HSW framework.

We also contribute a simple tool to aid empirical studies that uses night-

lights to estimate socioeconomic developments. The list of topics that have been

studied empirically based on nightlights data is long and growing.3 Our approach

provides a simple methodology to fully implement the HSW model in a way that

minimizes the uncertainty around the optimal estimate of economic activity pro-

duced by the model. This is of paramount importance for all types of empirical

applications.

The rest of the paper is organized as follows. Section 2 presents our theo-

retical refinement of HSW’s two-signal model with the addition of a third signal.

It is followed by the application of the method using urban land cover as a third

signal. Section 3 describes the data followed in Section 4 by the empirical results

for all and African countries. Section 5 illustrates the value of this fully identified

model for empirical work. We conclude in Section 6.

3Nightlights have been employed, among others, to validate statistical measures of income,
such as the Penn’s World Tables or household surveys (Pinkovskiy and Sala-i Martin, 2016a,b);
to estimate informal economic activities (Chen and Nordhaus, 2011; Ghosh et al., 2010); to study
the effects of intercity linkages, institutions and ethnic characteristics on regional income in Africa
(Alesina et al., 2016; Michalopoulos and Papaioannou, 2013a,b; Storeygard, 2016); to explore re-
gional political favoritism (Hodler and Raschky, 2014); and to estimate the impact of aid on growth
at sub-national level (Civelli et al., 2018; Dreher and Lohmann, 2015).
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2 A Three-Signal Model of Economic Activities

2.1 The Underidentification of the Two-Signal Model

We begin by briefly recapitulating HSW’s original model to estimate the true, but

unobservable, GDP growth by exploiting two observable noisy signals correlated

with the true economic activities. Let yj be the true GDP growth rate in country j.

Let x1j and x2j respectively indicate the two signals used in the model, which cor-

respond to the growth rates of official GDP and of observed nightlights in country

j in the empirical exercise. HSW assume that the two signals are linearly related to

true GDP which, as standard in the signal extraction literature, allows for an error

orthogonal to yj that embeds the precision (or tightness) of the signal around the

fundamental, namely:

x1j = yj + ε1j (1)

x2j = βx2yj + ε2j. (2)

The variance of yj is denoted by σ2
y . Similarly, the variances of the signals

are given by σ2
x1

and σ2
x2

. A similar notation is used for the variances of the signal

noises as well: σ2
1 and σ2

2 for ε1j and ε2j .

HSW complete the model with a predictive equation that links the two sig-

nals to each other:

x1j = ψx2x2j + ej. (3)

The predicted value x̂1j = ψ̂x2x2j is linearly combined with the observed signal

x1j to improve the accuracy of the estimate of the true GDP growth exploiting the

information contained in the signals:

ŷj = λx1j + (1− λ)x̂1j. (4)
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The optimal weight on the official GDP in (4), denoted λ∗HSW , is chosen to

minimize the variance of the forecast error of the predicted GDP growth, var(ŷ−y),

given the structure of the model and the assumption that the errors in the measure-

ment equations (1)-(2) are mutually orthogonal.

HSW show that λ∗HSW is a function of four unknown parameters, namely

(σ2
y , σ

2
1, σ

2
2, βx2). From equation (8) of HSW, the solution is:

λ∗HSW =
1

1 +
(σ2

1

σ2
y

+
σ2
1

σ2
2

β2
x2

). (5)

However, only three moment conditions are available from the observable data.

Two conditions are obtained from the variance of the signals:

σ2
x1

= σ2
y + σ2

1

σ2
x2

= β2
x2
σ2
y + σ2

2,

while the last one is provided by the covariance between the two signals, σx1x2 :

σx1x2 = βx2σ
2
y

To close the model and solve for the true income growth, they make use

of the signal-to-noise ratio associated with signal x1j , the officially measured GDP

growth rate. From equation (1), define the signal-to-noise ratio as:

ϕ =
σ2
y

σ2
y + σ2

1

. (6)

HSW split the sample of developing countries into two groups based on the quality

of their national accounting system, and assume they only differ by the signal-to-

noise ratio, ϕ. If ϕ for one group (say, those with high-quality data) is known, they
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can use this equation to infer the ϕ for the other, and the optimal λ∗HSW ’s for both

groups. HSW’s preferred estimates of true income growth assume ϕ = 0.9 for the

high-quality data countries and conduct an insightful investigation of the relation

between signal precision and λ∗HSW ; nevertheless, the underlying identification is-

sue remains as any ϕ would in principle be admissible.

2.2 A Third Signal to Solve Them All

We demonstrate below that a third signal can overcome the underidentification of

model parameters and do away with the need to assume a value for ϕ. Let the

third signal be x3j , corresponding to the growth rate of urban land cover in the

empirical exercise in Section 4. We modify the structure of the model in two ways.

First, we add to (1) and (2) a measurement equation for the new signal:

x3j = βx3yj + ε3j. (7)

We denote the variance of x3j and ε3j with σ2
x3

and σ2
3 respectively.

Second, the predictive equation (3) is modified to also include the third sig-

nal:

x1j = ψx2x2j + ψx3x3j + ej, (8)

which is associated to a predicted value of the main signal given by x̂1j = ψ̂x2x2j +

ψ̂x3x3j .

As in the two-signal model, the optimal λ∗ of the augmented model is cho-

sen to minimize the variance of the forecast error of the predicted GDP growth.

Using (8) in (4), the structural equations (1)-(2), and (7) and the assumption that
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their errors are mutually orthogonal, var(ŷ − y) can be written as

var(ŷ − y) = var
[
λ(x1j − yj) + (1− λ)(x̂1j − yj)

]
= λ2σ2

1 + (1− λ)2
[
ψ̂2
x2
σ2
2 + ψ̂2

x3
σ2
3 + (ψ̂x2βx2 + ψ̂x3βx3 − 1)2σ2

y

]
, (9)

Its derivative with respect to λ yields:

λ∗ =
ψ̂2
x2
σ2
2 + ψ̂2

x3
σ2
3 +

(
ψ̂x2βx2 + ψ̂x3βx3 − 1

)2
σ2
y

σ2
1 + ψ̂2

x2
σ2
2 + ψ̂2

x3
σ2
3 + (ψ̂x2βx2 + ψ̂x3βx3 − 1)2σ2

y

. (10)

It is easy to show that the OLS estimates ψ̂x2 and ψ̂x3 return a biased estimate

of the inverse of the two coefficients βx2 and βx3 , with a bias structure that depends

on the underlying parameters of the signaling model.4 Using this fact and after a

few manipulations, λ∗ in (10) can be simply expressed as:

λ∗ =
1

1 +
(σ2

1

σ2
y

+
σ2
1

σ2
2

β2
x2

+
σ2
1

σ2
3

β2
x3

). (11)

Therefore, the optimal λ∗ depends on six unknown parameters (σ2
y, σ

2
1, σ

2
2, σ

2
3, βx2 , βx3).

Six sample moment conditions are necessary to fully identify these six parameters

from the data.

The first three condition are obtained from the variance of the three signals,

4The bias structure is given by:

plim(ψ̂x2
) =

1

βx2

(
β2
x2
σ2
yσ

2
3

β2
x2
σ2
yσ

2
3 + β2

x3
σ2
yσ

2
2 + σ2

2σ
2
3

)
plim(ψ̂x3

) =
1

βx3

(
β2
x3
σ2
yσ

2
2

β2
x2
σ2
yσ

2
3 + β2

x3
σ2
yσ

2
2 + σ2

2σ
2
3

)
.
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which using (1)-(2) and (7) can be expressed as:

σ2
x1

= σ2
y + σ2

1 (12)

σ2
x2

= β2
x2
σ2
y + σ2

2 (13)

σ2
x3

= β2
x3
σ2
y + σ2

3. (14)

The other three conditions are provided by the covariances between the three sig-

nals. These can be expressed as:

σx1x2 = βx2σ
2
y (15)

σx1x3 = βx3σ
2
y (16)

σx2x3 = βx2βx3σ
2
y (17)

Conditions (15)-(17) give the solution for βx2 , βx3 , and σ2
y . Given these, (12)-(14)

allow us to solve for σ2
1 , σ2

2 , and σ2
3 . We explicitly derive the model solution in

Appendix B.1.

The third signal provides three new moment conditions — equations (14),

(16), and (17) — with the introduction of two additional parameters (βx3 and σ2
3).

It therefore overcomes the underidentification issue of the two-signal model. Two

of these moment conditions are equivalent to those related to signal x2 in HSW,

and they are respectively obtained from the variance of signal x3 in (14) and the

covariance between x3 and x1 in (16). The additional moments from the covariance

between x3 and x2 in (17) ensures that the model is (just-)identified.5

The solution to the three-signal model also allows us to recover the primi-

tive parameters necessary to estimate λ∗HSW for the two-signal model in (5). Hence,

we can use equation (6) to infer true growth for the whole sample, even if the addi-

5In Appendix B.2, we show that the moment conditions from additional signals beyond the
third lead to an over-identified model under the assumption of the orthogonality of the errors in the
measurement equations. However, finding extra signals that satisfy the identification requirements
(Section 2.3) is nontrivial.
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tional signal is only informative for a subset of the sample for a given period. The

ϕ for the sample where the third signal is informative would be sufficient to also

pin down ϕ and λ∗HSW for the rest of the sample. This largely simplifies the search

for an empirically suitable third signal for the full sample in all periods.6

2.3 Identification Requirements for Signal Selection

For identification, signals must satisfy two conditions. First, the errors of the mea-

surement equations (1), (2), and (7) (hereafter, the ME errors) are assumed to be

orthogonal:

σij = 0 ∀i, j = 1, 2, 3; i ̸= j. (18)

This is a fairly common assumption in signaling models: HSW’s two-signal model

assumes σ12 = 0 (for official GDP and nightlights). Failing these conditions, addi-

tional covariance terms would show up in the expression for var(ŷ − y), and the

model would again be under-identified.

Second, for a solution to exist, the covariance between the second and third

signals must be positive and sufficiently strong, i.e.:7

σx2x3 > 0 (19)

σ2
x1
>
σx1x3σx1x2

σx2x3

. (20)

The new signal must be sufficiently informative: it must be not only correlated

with economic activity, but also with the main signals.

3 Data

We need data for the three signals: urban land cover, night lights, and official GDP.

6See Appendix B.3 for a full derivation of the solution for this split-sample approach.
7We detail these conditions in Appendix B.1.
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3.1 Urban Land Cover

Our measure of urban land cover is obtained from the European Space Agency

(ESA) Climate Change Initiative (CCI). Their land cover raster product documents

consistent global land cover coverage at 300 meters spatial resolution on an annual

basis from 1992 to 2020, describing the land surface in the 22 classes defined by the

United Nations Land Cover Classification System (LCCS). We extract the share of

urban land cover from the original compound land cover raster data. Similar to

nightlights, for the national level analysis, we adjust for the curvature of Earth for

this data as well.8

3.2 Nightlights

The baseline nightlights data are derived from annual composites of nightlights

intensity from the Defense Meteorological Satellite Program (DMSP) satellites. The

stable lights product, available over 1992-2013, provides 6-bit digital numbers (DN)

ranging from 0 to 63 for each 30 arc-second output pixel. During processing,

ephemeral lights, such as from fires and gas flaring, are removed. Processing also

excludes (at the pixel level) images for nights affected by clouds, moonlight, sun-

light, and other glare. Lights are aggregated at the geographic level of analysis,

after applying a correction for the earth’s curvature at the country level.9

We extend the baseline DMSP data, which officially ends in 2013 with the

decommissioning of the DMSP mission, with a DMSP-like nighttime lights prod-

uct derived from the Visible Infrared Imaging Radiometer Suite (VIIRS) Lights,

and made available by the Earth Observation Group through 2019. In this series,

the light product from the VIIRS instrument suite onboard the current NASA /

8The ESA-CCI land cover product is an ideal candidate for a signal because it is annually avail-
able for an extended period. Hua et al. (2018) find that among commonly used global-scale land
cover products, it offers the best spatial consistency over time.

9Because of the earth’s curvature, grid cell size varies in proportion to the cosine of latitude. We
follow HSW’s procedure by calculating a weighted average (based on country’s land area) of lights
across pixels within a country.
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NOAA SNPP satellite — which features higher resolution and better overall qual-

ity compared to the original DMSP iteration — were converted to DMSP DNs us-

ing the methodology by Nechaev et al. (2021).

3.3 GDP

For our national level analysis, official country GDP data at national level are de-

rived from the 2023 World Development Indicators (WDI) dataset of the World

Bank. We use constant 2015 US dollar denominated GDP figures.

4 Application

In this section, we illustrate the application of our method with urban land cover

as a third signal. We first show that a model with the official GDP, nightlights, and

urban land cover as signals satisfies the identification requirements of Section 2.3.

We then discuss the results of our estimation for all and African countries.

4.1 Urban Land Cover as a Third Signal

4.1.1 Urban Land Cover and Economic Activities

We first show that the urban land cover signal meaningfully captures economic

activities. Figure 1 plots urban land cover growth, x3, against official GDP growth,

x1, and compares it to the same plot for nightlights luminosity growth, x2. The

growth rates are constructed as log-differences, taking the means of the first and

last two years of the period as initial and final observations respectively over the

period 1995-2019 for the global sample. We fit a non-parametric regression esti-

mated with an Epanechnikov kernel and bandwidth set at .8 to check for non-

linearity. Both signals are positively correlated with the official GDP growth, but

urban land cover exhibits a weaker correlations than nightlights. We observe very
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limited evidence of nonlinear effects, with some nonlinearity mostly driven by the

smaller number of observations at the extremes of the signal ranges, especially for

urban land cover.

We then estimate the GDP growth predictive regression of model (8). Ta-

ble 1 reports the estimates of the model for all and African countries, along with

predictive regressions based on only either of the two signals alone reflecting the

exercise in Figure 1. The predictive regression captures the long-term correlation

between GDP growth and the signals. Our methodology is mostly agnostic re-

garding the predictive stage of the HSW model. It simply requires an additional

informative signal with the aforementioned statistical characteristics regardless of

the relative magnitude of its coefficient in model (8). The model fit, captured by

the adjusted R2, does not necessarily increase with the additional signal.

4.1.2 The Orthogonality of the ME Errors

Section 2.3 shows that identification first requires the orthogonality of the ME er-

rors for all three signals. Because the three-signal model is just identified, this

assumption is untestable. However, we argue that this is a reasonable assumption

for our combination of signals.

First, the ME errors may be correlated if, e.g., all signals were collected by

the same instrument. However, as discussed in Section 3, official GDP, nightlights

and urban land cover were produced by different agencies. The latter two were

collected by different satellite programs.

Second, Henderson et al. (2012, p.1006) point out that the errors in the night-

lights equation can include cross-country variations in the relationship between

official GDP and luminosity growth that arise from the variations in the sectoral

compositions of national GDPs. To use their example, while steel and software

productions both increase GDP, the former contributes more to luminosity growth

than the latter. However, it is reasonable to think these errors are uncorrelated with
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errors in the official GDP measurements. We can make a similar argument for the

ME errors of urban land cover and official GDP.

Finally, the ME errors of urban land cover and nightlights also differ be-

cause the former can only grow horizontally on the map, while the latter can also

grow vertically (capturing its intensity). Consider two similar urban expansions

that occur either: (i) artificially without economic and population expansions; or

(ii) normally with an economic expansion. The nightlights growth from (i) would

be feebler than those from (ii). While the ME errors in the urban signal equa-

tion is smaller in (ii), the adjustment on the intensive margin of lights might still

over-/under-estimate the true GDP growth, decoupling the ME errors of the two

signals. Moreover, at the intensive margin, the ME errors of nightlights would be

also affected by other factors such as overglow or saturation of the signal, which

do not affect urban land cover.

4.1.3 Examining the Signal Covariance Structure

Finally, we examine whether the signals are sufficiently informative for the analy-

sis. Columns 1–3 of Table 2 present the signals’ covariance structure for all and

African countries. We find that the nightlights-urban land cover correlation is

smaller than both the nightlights–official GDP and the urban land cover–official

GDP correlations. Nevertheless, it is positive and quite sizable, as expected from

conditions (19) and (20).10

4.2 Results

We next present the optimal weight for the official GDP growth, λ∗, in equation

(11) for our two samples. Table 2 summarizes the overall results. Appendix Table

10Overall, the requirements are based on a comparison of variances and covariances of the sig-
nals. However, as shown in Appendix B.1, conditions (19) and (20) can also be expressed in cor-
relation terms. We prefer to rely on correlations in the discussion here because they provide the
intuition and are easier to interpret.
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C.1 reports the full set of estimated parameters and covariance matrices.

4.2.1 All Countries

Our first sample parallels the HSW’s exercise.11 We estimate a λ∗ = .56 for the en-

tire group of countries. The corresponding signal-to-noise ratio of the GDP signal

ϕ in (6) is .78. This sample includes a large variety of countries, and we can think

of this λ as a broadly defined reference value at national level that would work in

general for countries with “average” GDP data quality. Following HSW, we split

the sample of countries into two based on the World Bank classification of the ca-

pacity of their national statistical agencies.12 For the countries with low-quality

statistical capacity we obtain λ∗ = .20 and ϕ = .40, whereas the high-quality ones

have λ∗ = .82 and ϕ = .93.13

Our estimates validate the calibration exercise of HSW by showing that the

optimal GDP weight λ∗ is an increasing function of the GDP data quality and that

nightlights luminosity and urban land cover are useful signals to recover the true

economic activity when the GDP data is unreliable. However, the major difference

— and the contribution — of our approach is that the augmented models for the

two groups are independently identified. Our approach does not require an initial

guess to calibrate the signal-to-noise ratio of the official GDP growth signal for

either group. Instead, it allows the data to produce a high λ for the countries with

high-quality statistical capacity, implying that their GDP data already provide an

excellent proxy for economic activity.

11Appendix Table C.4 lists the included countries and their GDP data quality. Compared to
HSW, we extend the sample by twenty countries, but lose six due to missing GDP observations
(see Appendix A.3 for the details). The time period is also extended by thirteen years.

12See Appendix A for the data source for the statistical capacity score.
13As in HSW, this exercise assumes that the two groups have different signal-to-noise ratios for

the official GDP growth signal, while the relation between the other two signals and the official
GDP is taken as common across groups.
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4.2.2 African Countries

This sample includes developing countries in the lower-to-mid range of GDP data

reliability.14 As in the full sample, the correlation between nightlights and urban

land cover is positive, but smaller than the nightlights–official GDP and urban land

cover–official GDP correlations. This is consistent with the conditions for the exis-

tence of a solution. The optimal estimated weight is λ∗ = .38, with a corresponding

signal-to-noise ratio of the GDP growth signal of ϕ = .59. This result corroborates

the notion that the key determinant of λ is the quality of the a country’s national

accounting system instead of the degree of its development.

5 Empirical Implications

A fully identified model offers the following advantages for empirical work. First,

the optimal identification of λ∗ yields an accuracy gain that cannot be achieved by

adding signals to the GDP growth prediction estimation. Second, under a reason-

able assumption, it allows researchers to estimate true GDP growth for the whole

sample, even when the third signal is only available for its subset. Third, it pro-

vides a means to validate and assess the magnitude and direction of potential mea-

surement errors of empirical applications of signal-based estimation of economic

activity. Finally, it offers a criterion to choose between available signals.

5.1 Model Accuracy

We first compare the predicted GDP growth from equation (8), x̂1j , with the esti-

mated true GDP growth, ŷj in (4). Both estimates use the three-signal model spec-

ification. We calculate the root mean squared error (RMSE) of using x̂1j instead of

ŷj to predict growth in the full sample of countries. We find an RMSE of 17% —

14Appendix Table C.5 lists the included African countries.
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a large error that is about one fifth of the average estimated ŷj = 83% over the 24

years of our sample.

Next, we show that the accuracy gain from adding an extra signal in the

predictive stage is marginal compared to that from properly identifying λ∗. To

this end, we compare the optimal ŷi from the fully-identified three-signal model to

that of the nested two-signal model identified by using the subset (σ2
y, σ

2
1, σ

2
2, βx2)

of the parameters from the three-signal model. Figure 2 compares the two series

for all countries. The two estimates are very similar. They positively comove and

a formal t-test does not reject the hypothesis that the difference between the two is

zero (with p-value = 1). This confirms that adding the urban signal in the predictive

stage leads to a negligible gain in accuracy of ŷi.15

Finally, we show that achieving full identification is paramount for the ac-

curacy of the true GDP growth estimates by estimating ŷj for the countries with

low-quality statistical capacity using the overall λ∗ = .56 instead of the group-

specific parameter .20. We find that this alternative growth prediction would incur

an RMSE of 11%, which corresponds to about one seventh of the average growth

of 79% estimated for this sample of countries with the correct weights.

5.2 Extrapolation Using an Estimated λ∗

There will be cases where the third signal is not available for a subset of coun-

tries. We can combine this approach with HSW’s split-sample strategy to estimate

economic activity for these countries. We show in Appendix B.3 that under the

assumption that two groups of countries differ only in terms of their signal-to-

noise ratios of the official GDP growth signal, the availability of a third signal for

one group is sufficient to also identify σy and λ∗HSW (the optimal weight for the

two-signal model) for the group that is missing the third signal. This λ∗HSW would

15Appendix Figure C.1 shows a similar comovement of ŷi constructed using the λ∗ from the
fully identified three-signal model, and either the three-signal predicted GDP (equation 8) or the
two-signal one (equation 3).

18



allow us to construct an estimate of economic activity growth only relying on the

nightlights signal which, as discussed above, would be fairly close to that obtained

from the augmented model.

5.3 Model Validation and Measurement Errors

A common empirical application of the HSW framework is to use the predictive

stage to estimate GDP growth from nightlights changes. The baseline ψ̂x2 = .3

found by HSW is sometimes used; alternatively, when official income data are

available for a subset of countries or regions, the predictive model is fitted and the

estimated ψ̂x2 applied to the remaining part of the sample (e.g., Civelli et al., 2018).

We can use true GDP growth estimates from the augmented model to as-

sess this practice by comparing the predicted GDP growth, x̂1, to the true GDP

growth, ŷ. First, we randomly select two-thirds of a sample as a training sample

to estimate ψ̂x2 . We then use it to predict the GDP growth for the remaining third

“out-of-sample” observations. We do this for one hundred times, take the average

predicted GDP growth for each unit, and compare it with the estimated true GDP

growth. We work with the African sample and Figure 3 presents this comparison

with the countries grouped by quality of the official GDP data.

The results show that the predicted GDP growth generally underestimates

the true GDP growth, with the exception of a handful of lower- and medium-data-

quality countries. The estimation error is also substantial, with an RMSE about half

the size of the average true GDP growth. In some cases, relying on the predicted

GDP growth can lead to quite large errors of up to 3-4% in annualized terms, not

only for the lower-data-quality countries (Zimbabwe, Central African Republic)

but also the higher-data-quality ones (Ethiopia, Uganda, Nigeria, Malawi). For

one country, Equatorial Guinea, the error almost gets as large as 7%.
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5.4 Signal Selection

With increased accessibility to geospatial data, researchers might find multiple sig-

nals that satisfy the identification conditions (Section 2.3) and can be a viable third

signal. We propose a simple theoretical criterion to compare their performance

based on the variance of the forecast error of the true GDP growth in (9). This is

the loss function that is minimized to find the optimal solution for λ∗ and it is a

function of the estimated parameters of the fully-identified model. The best third

signal, conditional on two other signals, is the one that delivers the lowest forecast

error variance.

As an instructive example, we apply this criterion to compare urban land

cover to NO2 emission over the period 2005-2019 for all countries. NO2 has been

demonstrated to be another good predictor of true GDP growth. We use NO2 emis-

sion data based on readings from the Ozone Monitoring Instrument (OMI) of the

NASA EOS-Aura satellite.16 We find that the urban land cover signal is preferred

to NO2 emissions in this sample, with 1.28% v. 1.43% variances, respectively.17

However, there can be other empirical considerations for signal selection.

For instance, the validation exercise in Section 5.3 can produce a useful criterion.

If this is the application of interest, the researcher should consider the signal that

delivers the smallest RMSE in the out-of-sample prediction of GDP growth. Simi-

larly, since identification requires the orthogonality of the ME errors, the researcher

should consider the extent to which alternative signals satisfy this assumption.

16Appendix A details the data source for NO2 emission.
17The time period of this example is dictated by the availability of the NO2 data. We report the

full set of results for the two models estimated for this exercise in Appendix Tables C.2-C.3 and
Figure C.2. Overall the two signals perform very similarly, but urban land cover is slightly more
informative about nightlights and official GDP as suggested by the comparison criterion.
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6 Conclusion

From policy evaluation to international comparisons, the availability of reliable

measures of income is of paramount importance for empirical work. We want to

be able to accurately infer true income growth. The augmented three-signal model

we propose enhances the HSW methodology by solving the identification issue

of their original approach. This improvement has relevant implications for the

estimation of true GDP growth.

The real gain in accuracy comes from the identification stage of the model,

rather than a more refined GDP growth predictive equation. When an official mea-

sure of GDP is available, especially when we have little confidence about the qual-

ity of the data, using the fully identified model to estimate true GDP growth is

crucial. The optimal λ∗ varies across samples and geographic level of analysis, and

the augmented model can help to correctly choose the optimal λ∗ to use to form

the estimates.

However, the augmented model is also useful when an official measure of

income is only partially available. The augmented model can be leveraged to en-

hance existing estimation procedures and to validate the estimates produced by

other approaches, assessing the sign and magnitude of their potential measure-

ment errors. The flexibility of the augmented model would accommodate other

types of third signals instead of urban land cover, such as air pollution or cellular

phone data. In principle, the model could also be applied to any other three-signal

combinations that do not necessarily include official income statistics or night-

lights.
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Tables and Figures

Table 1: Official GDP Growth (x1) Predictive Regressions

World Africa

(1) (2) (3) (4) (5) (6)

nighlights (x2) 0.413 0.461 0.241 0.283
(0.054) (0.046) (0.098) (0.095)

urban (x3) 0.185 0.393 0.258 0.435
(0.074) (0.100) (0.139) (0.161)

N 184 184 184 45 45 45
adj. R2 0.486 0.455 0.166 0.293 0.263 0.128
Period 1995-2019 1995-2019 1995-2019 2001-2019 2001-2019 2001-2019

Note: Estimation of the predictive regression model (8). Growth rates are calculated as log-differences over
the sample, taking the mean of the observations of the first and last two years of the sample as initial and
final values. Columns (2) and (5) report the estimates of the regression in the corresponding HSW two-signal
version of the model in equation (3). Columns (3) and (6) correspond to the two-signal model with the urban
land cover signal instead of nightlights. Robust standard errors in parentheses.
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Table 2: Signal Correlations and Model Parameters

ρx1x2 ρx1x3 ρx2x3 ϕ λ∗

(1) (2) (3) (4) (5)

All Countries 0.68 0.41 0.36 0.78 0.56

Countries with [. . . ] statistical capacity:
– high-quality 0.93 0.82
– low-quality 0.40 0.20

African Countries 0.53 0.38 0.35 0.59 0.38

Note: Signal correlation structure and estimates of λ∗ (the optimal
GDP growth weight in 11) and ϕ (the signal-to-noise ratio of the
GDP growth signal defined in 6) in the augmented model for the
two samples of analysis. The notation ρxixj

indicates the corre-
lation between signal xi and xj . A common correlation structure
is maintained across the subsets of countries with high- and low-
quality statistical capacity.

27



(a) Nightlights (b) Urban land cover

Note: Long-term comparison of the growth rates of official GDP and nightlights luminosity (Panel
a) and GDP and urban land cover (Panel b). Growth rates are calculated as log-differences over the
sample, taking the mean of the observations of the first and last two years of the sample as initial
and final values. Full World countries sample for the period 1995-2019. The red lines correspond
to a non-parametric, local-linear fit estimated with an Epanechnikov kernel (bandwidth = .8).

Figure 1: Official GDP Growth v. Signals Growth
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Note: Comparison of the estimated true GDP growth ŷi from the augmented model (with x2 and
x3 signals) with that from the HSW two-signal model (with x2 only). The full set of parameters
are identified using the three-signal model, and the subset (σ2

y, σ
2
1 , σ

2
2 , βx2 ) of those parameters are

used to estimate the two-signal model. The solid line is the 45-degree line. Sample is all countries.

Figure 2: True Growth Estimates: Two- v. Three-Signal Model

29



Note: Comparison of the out-of-sample prediction of GDP growth based on the nightlights signal
only (x2) with the true GDP growth estimated with the three-signal model. Two thirds of the
observations are used as the training sample to estimate the ψ̂x2 that is used to predict GDP growth
for the remaining “out-of-sample” observations. Average predicted GDP growth is reported out of
one hundred repetitions. The solid line is the 45-degree line. Sample is the African countries.

Figure 3: Out-of-sample Predicted GDP v. Model-Estimated True GDP Growth
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Online Appendix

A Dataset

This section provides further details on the additional datasets used in the empiri-

cal exercise and how the all country sample is constructed.

A.1 Nitrogen Dioxide

To illustrate our signal selection criterion (Section 5.4), we use satellite readings of

tropospheric nitrogen dioxide (NO2) densities as an alternative third signal. NO2

is a byproduct of anthropogenic sources primarily including combustion, and thus

directly representative of economic activity. The short atmospheric lifespan of

NO2, at less than a day, would imply that densities are closely correlated to an-

thropogenic emissions. While these densities may be subject to other non-human

factors (e.g., soil emissions, wildfires, and lightning), these would have compara-

tively small effects.18

The NO2 data in this paper are based on readings from the Ozone Monitor-

ing Instrument (OMI), a nadir-viewing visual and ultraviolet spectrometer aboard

the NASA EOS-Aura satellite, for the period 2005-2020 and elaborated by Boersma

et al. (2011).19 Similar to the data for nightlights and urban land cover, we also ad-

just them for the Earth’s curvature.

A.2 Statistical Capacity Score

Following HSW, we demarcate the countries used in our analysis based on the

robustness of their respective statistical capacities. We use the World Bank’s Sta-

tistical Capacity Indicators from 2010. It is a composite score that captures the

18For a comprehensive assessment of the use of NO2 for the estimation of economic activities see
Ezran et al. (2023).

19NO2 are publicly, freely available from different online sources. We obtain them from the ESA
Tropospheric Emission Monitoring Internet Service at http://www.temis.nl/.
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capacity of a country’s statistical system in the following areas: methodology; data

sources; and periodicity and timeliness. Countries are scored against 25 criteria in

these areas, using publicly available information and/or country input. The over-

all score is a simple average of all three area scores on a scale of 0-100. We use a

cutoff of 50 to distinguish between countries with high and low statistical capacity.

A.3 All Countries Sample

Compared to the sample in the HSW’s long-difference analysis, our sample:

• Includes 20 additional countries: Aruba, Andorra, Bahrain, Bosnia and Herze-

govina, Barbados, Cuba, Equatorial Guinea, Hong Kong, Iraq, Kuwait, Macao,

Monaco, Maldives, New Caledonia, Puerto Rico, Palestina, French Polynesia,

Singapore, Serbia, and Tuvalu.

• Drops 6 countries due to missing GDP data either at the beginning or the end

of the time sample: Djibouti, Liberia, Palau (at the beginning of the sample);

Eritrea, Venezuela, Yemen (at the end of the sample).

B Theoretical Methods

This section provides further details on some of the theoretical results in Section 2.

B.1 Solving the Augmented Model

In this section, we derive the solution of the augmented model. It also presents the

set of technical conditions that must be empirically satisfied by the signals to solve

for the parameters of the model.
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The Solution: The identifying moment conditions derived in the paper (equa-

tions 12-17) are:

σ2
x1

= σ2
y + σ2

1 (B.1)

σ2
x2

= β2
x2
σ2
y + σ2

2 (B.2)

σ2
x3

= β2
x3
σ2
y + σ2

3 (B.3)

σx1x2 = βx2σ
2
y (B.4)

σx1x3 = βx3σ
2
y (B.5)

σx2x3 = βx2βx3σ
2
y . (B.6)

From the last three moment conditions (B.4)-(B.6), we can obtain the solution for

βx2 , βx3 , and σ2
y :

σ2
y =

σx1x3σx1x2

σx2x3

(B.7)

βx2 =
σx2x3

σx1x3

(B.8)

βx3 =
σx2x3

σx1x2

. (B.9)

Using these solutions into (B.1)-(B.3), we find the solution for the remaining three

parameters:

σ2
1 = σ2

x1
− σx1x3σx1x2

σx2x3

(B.10)

σ2
2 = σ2

x2
− σ2

x1x2
(B.11)

σ2
3 = σ2

x3
− σ2

x1x3
. (B.12)

Technical Requirements: There are four empirical requirements for a solution to

exist. First, a third signal must be positively correlated with the second one. The

relation between signals and true economic activity can be normalized, without

loss of generality, to be positive, that is βx2 , βx3 > 0. This implies that σx1x2 and
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σx1x3 must be positive in (B.4)-(B.5). Therefore, given the solution for σ2
y , also

σx2x3 > 0. (B.13)

The other three requirements come from (B.10)-(B.12):

σ2
x1
>
σx1x3σx1x2

σx2x3

(B.14)

σ2
x2
> σ2

x1x2
(B.15)

σ2
x3
> σ2

x1x3
. (B.16)

These three conditions simply require that the three signals exhibit sufficiently

high variance relative to the observed signal covariance structure. While we find

that conditions (B.15) and (B.16) are generally easily satisfied by the data, condition

(B.14) more closely depends on the covariance between second and third signals.

The higher σx2x3 , the easier the requirement is satisfied. Hence, a positive and suf-

ficiently strong covariance between second and third signals is the key condition

to empirically select the third signal.

We also note that condition (B.14) can be easily rewritten in terms of corre-

lations between signals:
ρx1x3ρx1x2

ρx2x3

< 1, (B.17)

where the notation ρxixj
indicates the correlation between signal xi and xj . Sim-

ilarly, condition (B.13) can be re-expressed in correlation terms as ρx2x3 > 0. We

refer to (B.17) in the discussion of the empirical implementation of the model in

Section 4.1.3.

B.2 Higher-order Augmentation

Although the scope of this paper revolves around the fully-identified three-signal

model, we can extend the framework to any N ⩾ 2 signals. Let the index n =

1, ..., N indicate the signals, the structure of the model comprises N measurement
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equations:

x1j = βx1yj + ε1j

xnj = βxnyj + εnj ∀n = 2, ..., N,

and the predictive equation:

x1j =
N∑

n=2

ψxnxnj + ej.

The vector of unknown parameters includes 2N coefficients (σ2
y, {σ2

n}Nn=1, {βxn}Nn=2),

with a total number of N(N+1)
N

moment conditions – given by theN variances of the

signals and by the N !
2(N−2)!

covariances between all possible pairs of signals. The N -

signal model is hence over-identified by N(N−3)
2

moment conditions.

The optimal λ∗ follows an expression equivalent to (10)

λ∗ =
ψ̂2
x2
σ2
2 + · · ·+ ψ̂2

xN
σ2
N +

(
ψ̂x2βx2 + · · ·+ ψ̂xN

βxN
− 1

)2
σ2
y

σ2
1 + ψ̂2

x2
σ2
2 + · · ·+ ψ̂2

xN
σ2
N + (ψ̂x2βx2 + · · ·+ ψ̂xN

βxN
− 1)2σ2

y

,

but the vector of unknown coefficients does not have a simple closed-form solution

anymore and must be estimated, for instance, by GMM.

The over-identification result relies on the orthogonality assumption of the

errors terms εn. If this assumption is relaxed, N(N−1)
2

structural parameters would

be added to the model and the identification would be short by N moment con-

ditions. This assumption may be more convincing for some signal pairs, but not

others. In such a case, a model with multiple signals which is over-identified un-

der this underlying assumption could provide a way to pin down some of these

pairwise correlations.

Moreover, the over-identification of an N -signal model could be exploited

to device a test for the orthogonality assumption in the nested three-signal model.

The basic idea of this test would be to compare the estimated ŷj from the two ver-

sions of the model and test whether the difference between the two is statistically
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significant. In a manner similart to the Hansen-Sargan test, however, the rejection

of the test would not allow us to know which signal pairs fail the assumption.

Finally, as for the three-signal model, the N signals must empirically sat-

isfy some requirements for the signals to be admissible. In particular, the signal

covariance structure in the data must allow for a solution of the parameters of the

model in a space in which the signal to noise ratios are smaller than 1, i.e., in which

the estimated measurement equations error variances are necessarily positive. In

our empirical investigation of the thee-signal model, we find this condition is not

always easily satisfied by any signal. Increasing the number of auxiliary signals,

we expect these requirements to be even more challenging to satisfy.

B.3 Solution for the Split-Sample Model

This section provides details on the split-sample approach discussed in Section 2

(footnote 6) and Section 5.2, and used in Section 4.1.3 for the heterogeneity analysis

by data quality.

Let us suppose that a sample of countries can be split into two group, A

and B, based on some characteristics which provides some useful information for

identification. In their split-sample exercise, HSW assume that the two groups

share the same model equations, except for equation (1) in which the variance of

the g signal is allowed to be group specific. The identifying condition (B.1) can be

restated as

σ2
x1,A

= σ2
y + σ2

1,A (B.18)

σ2
x1,B

= σ2
y + σ2

1,B. (B.19)

This assumption also implies that equation (6), the signal to noise ratio of the x1
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signal (i.e., GDP growth in all these applications), must differ by group:

ϕA =
σ2
y

σ2
y + σ2

1,A

(B.20)

ϕB =
σ2
y

σ2
y + σ2

1,B

. (B.21)

By calibrating ϕA, an additional condition is provided to solve the HSW’s

model for group A. In particular σ2
y and σ2

1,A are obtained. Given σ2
y , (B.19) pins

down σ2
1,B and, as a consequence, ϕB as well. This is sufficient to also find a solu-

tion of the two-signal HSW model for group B. The same approach would apply

to the augmented three-signal model, but it is not necessary to find a solution in

this case, as the augmented model would already be fully identified for each group

separately.

Exploiting this approach, however, the augmented model allows for a fur-

ther result as we discuss in Section 5.2. Suppose a third signal x3 is available for

group A, but not group B. The augmented model allows us to solve for all the

model parameters for group A, especially σ2
y . Under the assumption of the split-

sample approach that σ2
y is common across groups, the two-signal model with only

signals x1 and x2 for groupB can be completely identified since only three parame-

ters are left now (σ2
1, σ

2
2, βx2) with three moment conditions. Moreover, in this case,

the remaining parameters could be taken as common across the entire sample (es-

timating the two-signal model with data from groups A and B) or could even be

assumed to be group-specific for group A if preferred.
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C Additional Tables and Figures

Note: Comparison of the estimated true GDP growth ŷi obtained from (4) for the augmented three-
signal model – with x2 and x3 signals used to predict x̂1 – to the ŷi in which only x2 is used to
predict x̂1 in (4). The solid line is the 45-degree line. Sample is all countries.

Figure C.1: True GDP Growth Estimates
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(a) Nightlights (b) Urban land cover

(c) NO2

Note: Long-term comparison of the growth rates of official GDP and: (a) nightlights luminosity;
(b) urban land cover; and (c) NO2 emission for all countries between 2005 and 2019. Growth rates
are calculated as log-differences over the sample, taking the mean of the observations of the first
and last two years of the sample as initial and final values. The red lines correspond to a non-
parametric, local-linear fit estimated with an Epanechnikov kernel (bandwidth = .8).

Figure C.2: Official GDP Growth v. Signals Growth

39



Table C.1: Model Parameters and the Signal Covariance Struc-
ture

Panel A: Parameter Estimations
Model βx2 βx3 σ1 σ2 σ3 σy

All Countries 1.28 0.56 0.04 0.17 0.17 0.15

Countries with [. . . ] statistical capacity:
– high-quality 1.28 0.56 0.01 0.17 0.17 0.15
– low-quality 1.28 0.56 0.22 0.17 0.17 0.15

African Countries 1.69 0.58 0.04 0.19 0.06 0.06

Panel B: Signal Covariance Structure
Model σ2

x1
σ2
x2

σ2
x3

σx1x2 σx1x3 σx2x3

All Countries 0.19 0.41 0.21 0.19 0.08 0.11

Countries with [. . . ] statistical capacity:
– high-quality 0.16
– low-quality 0.37

African Countries 0.11 0.37 0.08 0.10 0.04 0.06

Note: Panel A reports the estimates of the six parameters of the augmented
model. Panel B reports the covariance structures of the signals for the two
cases analyzed: all and African countries. A common covariance structure
is maintained across these two sub-sets, with the exception of σ2

x1
.
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Table C.2: Official GDP Growth (x1) Predictive Regressions, All Countries, 2005-2019

NO2 urban

(1) (2) (3) (4) (5) (6)

nighlights (x2) 0.254 0.284 0.218 0.284
(0.058) (0.058) (0.063) (0.058)

NO2 (x3) 0.367 0.531
(0.105) (0.099)

urban (x3) 0.311 0.467
(0.080) (0.070)

N 189 189 189 189 189 189
adj. R2 0.280 0.236 0.100 0.304 0.236 0.187
Period 2005-2019 2005-2019 2005-2019 2005-2019 2005-2019 2005-2019

Note: Estimation of the predictive regression model (8) for the 2005-2019 period for all countries. urban
and NO2 respectively indicate the growth rates of urban land cover and nitrogen dioxide pollution, two
alternative x3 signals. Growth rates are calculated as log-differences over the sample, taking the mean of
the observations of the first and last two years of the sample as initial and final values. Columns (2) and (5)
report the estimates of the regression in the corresponding HSW two-signal version of the model in equation
(3). Columns (3) and (6) correspond to the two-signal model with the urban land cover signal/NO2 instead
of nightlights. Robust standard errors in parentheses.

41



Table C.3: Comparing Two Signals – 2005-2019

Panel A: Signal Correlation and Model Parameters
Model ρx1x2 ρx1x3 ρx2x3 ϕ λ∗ Loss

NO2 0.49 0.32 0.23 0.70 0.57 1.43%
urban 0.49 0.44 0.39 0.55 0.35 1.28%

Panel B: Parameter Estimations
Model βx2 βx3 σ1 σ2 σ3 σy

NO2 1.21 0.28 0.02 0.16 0.03 0.06
urban 1.54 0.74 0.04 0.14 0.05 0.05

Panel C: Signal Covariance Structure
Model σ2

x1
σ2
x2

σ2
x3

σx1x2 σx1x3 σx2x3

NO2 0.08 0.24 0.03 0.07 0.02 0.02
urban 0.08 0.24 0.07 0.07 0.03 0.05

Note: Parameters and covariance structures of the two three-signal
models compared in Section 5.4. The two models are estimated
for the sample of all countries, over the period 2005-2019. The
two models differ for the third signal used: respectively, NO2 and
urban land cover. Panel A reports the signal correlation structure
and estimates of λ∗, ϕ, and the variance of the GDP forecast error
(Loss). Panel B shows the estimates of the six parameters of the
augmented model. Panel C compares the covariance structures of
the signals for the two model.
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Table C.4: Statistical Capacity of All Countries

Country Code
Statistical
Capacity

Score

Low-
quality

High-
quality

Aruba ABW 0 1
Angola AGO 46 1
Albania ALB 70 1
Andorra AND 100 1
United Arab Emirates ARE 100 1
Argentina ARG 87 1
Armenia ARM 92 1
Antigua and Barbuda ATG 42 1
Australia AUS 100 1
Austria AUT 100 1
Azerbaijan AZE 79 1
Burundi BDI 54 1
Belgium BEL 100 1
Benin BEN 56 1
Burkina Faso BFA 62 1
Bangladesh BGD 69 1
Bulgaria BGR 91 1
Bahrain BHR 100 1
Bahamas BHS 100 1
Bosnia and Herzegovina BIH 62 1
Belarus BLR 86 1
Belize BLZ 61 1
Bermuda BMU 100 1
Bolivia BOL 67 1
Brazil BRA 83 1
Barbados BRB 0 1
Brunei BRN 100 1
Bhutan BTN 76 1
Botswana BWA 60 1
Central African Republic CAF 56 1
Canada CAN 100 1
Switzerland CHE 100 1
Chile CHL 94 1
China CHN 66 1
Côte d’Ivoire CIV 59 1
Cameroon CMR 67 1
Democratic Republic of the Congo COD 36 1
Republic of Congo COG 54 1
Colombia COL 84 1
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Statistical Capacity of All Countries (continued)

Country Code
Statistical
Capacity

Score

Low-
quality

High-
quality

Comoros COM 50 1
Cape Verde CPV 73 1
Costa Rica CRI 77 1
Cuba CUB 99 1
Cyprus CYP 100 1
Czech Republic CZE 99 1
Germany DEU 100 1
Dominica DMA 47 1
Denmark DNK 100 1
Dominican Republic DOM 68 1
Algeria DZA 59 1
Ecuador ECU 82 1
Egypt EGY 86 1
Spain ESP 100 1
Estonia EST 99 1
Ethiopia ETH 80 1
Finland FIN 100 1
Fiji FJI 53 1
France FRA 100 1
Micronesia FSM 28 1
Gabon GAB 40 1
United Kingdom GBR 100 1
Georgia GEO 96 1
Ghana GHA 66 1
Guinea GIN 58 1
Gambia GMB 68 1
Guinea-Bissau GNB 46 1
Equatorial Guinea GNQ 32 1
Greece GRC 100 1
Grenada GRD 43 1
Guatemala GTM 86 1
Guyana GUY 53 1
Hong Kong HKG 100 1
Honduras HND 76 1
Croatia HRV 84 1
Haiti HTI 42 1
Hungary HUN 87 1
Indonesia IDN 87 1
Isle of Man IMN 100 1
India IND 81 1
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Statistical Capacity of All Countries (continued)

Country Code
Statistical
Capacity

Score

Low-
quality

High-
quality

Ireland IRL 100 1
Iran IRN 71 1
Iraq IRQ 41 1
Iceland ISL 100 1
Israel ISR 100 1
Italy ITA 100 1
Jamaica JAM 74 1
Jordan JOR 77 1
Japan JPN 100 1
Kazakhstan KAZ 96 1
Kenya KEN 62 1
Kyrgyzstan KGZ 89 1
Cambodia KHM 73 1
Kiribati KIR 37 1
Saint Kitts and Nevis KNA 61 1
South Korea KOR 100 1
Kuwait KWT 100 1
Laos LAO 70 1
Lebanon LBN 57 1
Saint Lucia LCA 60 1
Sri Lanka LKA 77 1
Lesotho LSO 66 1
Lithuania LTU 99 1
Luxembourg LUX 100 1
Latvia LVA 99 1
Macao MAC 0 1
Morocco MAR 78 1
Monaco MCO 100 1
Moldova MDA 84 1
Madagascar MDG 68 1
Maldives MDV 66 1
Mexico MEX 86 1
Marshall Islands MHL 41 1
Macedonia MKD 79 1
Mali MLI 63 1
Malta MLT 100 1
Myanmar MMR 52 1
Mongolia MNG 74 1
Mozambique MOZ 72 1
Mauritania MRT 62 1
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Statistical Capacity of All Countries (continued)

Country Code
Statistical
Capacity

Score

Low-
quality

High-
quality

Mauritius MUS 70 1
Malawi MWI 79 1
Malaysia MYS 80 1
Namibia NAM 52 1
New Caledonia NCL 0 1
Niger NER 68 1
Nigeria NGA 69 1
Nicaragua NIC 76 1
Netherlands NLD 100 1
Norway NOR 100 1
Nepal NPL 64 1
New Zealand NZL 100 1
Oman OMN 0 1
Pakistan PAK 77 1
Panama PAN 79 1
Peru PER 81 1
Philippines PHL 89 1
Papua New Guinea PNG 41 1
Poland POL 86 1
Puerto Rico PRI 100 1
Portugal PRT 100 1
Paraguay PRY 70 1
Palestina PSE 42 1
French Polynesia PYF 0 1
Romania ROU 96 1
Russia RUS 88 1
Rwanda RWA 68 1
Saudi Arabia SAU 100 1
Sudan SDN 44 1
Senegal SEN 73 1
Singapore SGP 100 1
Solomon Islands SLB 40 1
Sierra Leone SLE 52 1
El Salvador SLV 91 1
Serbia SRB 76 1
Suriname SUR 71 1
Slovakia SVK 83 1
Slovenia SVN 99 1
Sweden SWE 100 1
Swaziland SWZ 68 1
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Statistical Capacity of All Countries (continued)

Country Code
Statistical
Capacity

Score

Low-
quality

High-
quality

Seychelles SYC 59 1
Chad TCD 57 1
Togo TGO 51 1
Thailand THA 80 1
Tajikistan TJK 74 1
Turkmenistan TKM 39 1
Tonga TON 59 1
Trinidad and Tobago TTO 71 1
Tunisia TUN 79 1
Turkey TUR 84 1
Tuvalu TUV 0 1
Tanzania TZA 68 1
Uganda UGA 70 1
Ukraine UKR 88 1
Uruguay URY 96 1
United States USA 100 1
Uzbekistan UZB 61 1
Saint Vincent and the Grenadines VCT 54 1
Vietnam VNM 64 1
Vanuatu VUT 42 1
Samoa WSM 49 1
Yemen YEM 49 1
South Africa ZAF 82 1
Zambia ZMB 58 1
Zimbabwe ZWE 51 1

Note: The statistical capacity score is provided by the World Bank for developing countries. We
assign a score of 100 by default to developed countries. A cutoff of 50 is used to classify countries
as low/high quality.
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Table C.5: Statistical Capacity of Included African Countries

Country Code
Statistical
Capacity

Score

Low
Quality

Medium
Quality

High
Quality

Angola AGO 46 1
Burundi BDI 54 1
Benin BEN 56 1
Burkina Faso BFA 62 1
Botswana BWA 60 1
Central African Republic CAF 56 1
Côte d’Ivoire CIV 59 1
Cameroon CMR 67 1
Democratic Rep. of Congo COD 36 1
Republic of Congo COG 54 1
Algeria DZA 59 1
Egypt EGY 86 1
Ethiopia ETH 80 1
Gabon GAB 40 1
Ghana GHA 66 1
Guinea GIN 58 1
Gambia GMB 68 1
Guinea-Bissau GNB 46 1
Equatorial Guinea GNQ 32 1
Kenya KEN 62 1
Liberia LBR 33 1
Libya LBY 41 1
Lesotho LSO 66 1
Morocco MAR 78 1
Madagascar MDG 68 1
Mali MLI 63 1
Mozambique MOZ 72 1
Mauritania MRT 62 1
Malawi MWI 79 1
Namibia NAM 52 1
Niger NER 68 1
Nigeria NGA 69 1
Rwanda RWA 68 1
Sudan SDN 44 1
Senegal SEN 73 1
Sierra Leone SLE 52 1
Swaziland SWZ 68 1
Chad TCD 57 1
Togo TGO 51 1
Tunisia TUN 79 1
Tanzania TZA 68 1
Uganda UGA 70 1
South Africa ZAF 82 1
Zambia ZMB 58 1
Zimbabwe ZWE 51 1

Note: The statistical capacity score is provided by the World Bank for developing countries. The quality groups
are defined by the terciles of the score distribution.
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